物理化学主要公式

认证主体:于**(实名认证)

IP属地:天津

下载本文档

1、第一章 气体的pVT主要公式及使用条件 1. 1. 理想气体状态方程式 nRTRTMmpV?)/( 或 RTnVppV?)/(m 式中p,V,T及n单位分别为Pa,m3,K及mol。 m/VVn?称为气体的摩尔体积,其单位为m3 · mol-1。 R=8.314510 J · mol-1 · K-1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 2. 气体混合物 (1) (1) 组成 摩尔分数 yB (或xB) = ?AAB/nn 体积分数 /yBm,BB?V?AVyAm,A 式中?AAn 为混合气体总的物质的量。Am,?V表示在一定

2、T,p下纯气体A的摩尔体积。?AAm,AVy为在一定T,p下混合之前各纯组分体积的总和。 (2) (2) 摩尔质量 ?BBBBBBBmix/nMnmMyM 式中 ?BBmm 为混合气体的总质量,?BBnn为混合气体总的物质的量。上述各式适用于任意的气体混合物。 (3) VVppnny/BBBB? 式中pB为气体B,在混合的T,V条件下,单独存在时所产生的压力,称为B的分压力。?BV为B气体在混合气体的T,p下,单独存在时所占的体积。 3. 3. 道尔顿定律 pB = yBp,?BBpp 上式适用于任意气体。对于理想气体 VRTnp/B 4. 4. 阿马加分体积定律 VRTnV/BB? 此式只适

3、用于理想气体。 5. 5. 范德华方程 RTbVVap?)(/(m2m nRTnbVVanp?)(/(22 式中a的单位为Pa · m6 · mol-2,b的单位为m3 · mol-1,a和b皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa的中压范围内实际气体p,V,T,n的相互计算。 6. 6. 维里方程 .)/1(3m2mmm?VDVCVBRTpV 及 .)1(3'2''m?pDpCpBRTpV 上式中的B,C,D,.及B',C',D'.分别称为第二、第三、第四维里系数,它们皆是与气

4、体种类、温度有关的物理量。 适用的最高压力为1MPa至2MPa,高压下仍不能使用。 7. 7. 压缩因子的定义 )/()/(mRTpVnRTpVZ? Z的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 第二章 热力学第一定律 主要公式及使用条件 1. 1. 热力学第一定律的数学表示式 WQU? 或 'ambddUQWQpVW? 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 pamb为环境的压力,W'为非体积功。上式适用于封闭体系的一切过程。 2. 2. 焓的定义式 3. 3. 焓变 (1)

5、)(pVUH? 式中)(pV?为pV乘积的增量,只有在恒压下)()(12VVppV?在数值上等于体积功。 (2) 2,m1dpHnCT? 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT变化的一切过程。 5. 5. 恒容热和恒压热 VQU? (d0,'0VW? pQH? (d0,'0)pW? 6. 6. 热容的定义式 (1)定压热容和定容热容 /d(/)pppCQTHT? /d(/)VVVCQTUT? pVUH?2,m1dVUnCT?(2)摩尔定压

6、热容和摩尔定容热容 ,mm/(/)pppCCnHT?,mm/(/)VVVCCnUT? 上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容) 式中m和M分别为物质的质量和摩尔质量。 (4) ,m,mpVCCR? 此式只适用于理想气体。 (5)摩尔定压热容与温度的关系 23,mpCabTcTdT? 式中a, b, c及d对指定气体皆为常数。 (6)平均摩尔定压热容 21,m,m21d/()TppTCTTTC? 7. 7. 摩尔蒸发焓与温度的关系 21vapm2vapm1vap,m()()dTpTHTHTCT? 或 vapmvap(/)ppHTC?

7、式中 vap,mpC? = ,mpC(g) ,mpC(l),上式适用于恒压蒸发过程。 8. 8. 体积功 (1)定义式 VpWdamb? 或 VpWdamb? (2) )()(1221TTnRVVpW? 适用于理想气体恒压过程。 (3) )(21ambVVpW? 适用于恒外压过,m/pppcCmCM?程。 (4) )/ln()/ln(d121221ppnRTVVnRTVpWVV? 适用于理想气体恒温可逆过程。 (5) ,m21()VWUnCTT? 适用于,mVC为常数的理想气体绝热过程。 9. 理想气体可逆绝热过程方程 ,m2121(/)(/)1VCRTTVV? ,m2121(/)(/)1pC

8、RTTpp? 1)/)(/(1212?rVVpp 上式中,,m,m/pVCC?称为热容比(以前称为绝热指数),适用于,mVC为常数,理想气体可逆绝热过程p,V,T的计算。 10. 反应进度 BB/?n? 上式是用于反应开始时的反应进度为零的情况,B,0BBnnn?,B,0n为反应前B的物质的量。B?为B的反应计量系数,其量纲为一。?的量纲为mol。 11. 标准摩尔反应焓 rmBfmBcm(B,)(B,)HHH? 式中fm(B,)H?及cm(B,)H?分别为相态为?的物质B的标准摩尔生成焓和标准摩尔燃烧焓。上式适用于?=1 mol,在标准状态下的反应。 12. ?mrH?与温度的关系 21rm

9、2rm1r,m()()dTpTHTHTCT? 式中 r,m,mB(B)ppCC?,适用于恒压反应。 13. 节流膨胀系数的定义式 JT(/)HTp? TJ?又称为焦耳-汤姆逊系数。 第三章 第三章 热力学第二定律 主要公式及使用条件 1. 1. 热机效率 1211211/)(/)(/TTTQQQQW? 式中1Q和2Q分别为工质在循环过程中从高温热源T1吸收的热量和向低温热源T2放出的热。W为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一切可逆循环过程。 2. 2. 卡诺定理的重要结论 2211/TQTQ?可逆循环不可逆循环,00 任意可逆循环的热温商之和为零,

10、不可逆循环的热温商之和必小于零。 3. 3. 熵的定义 4. 4. 克劳修斯不等式 dS?/QTQT?, , 可逆不可逆 5. 5. 熵判据 ambsysisoSSS?0, 0, ?不可逆可逆 式中iso, sys和amb分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。此式rd/SQT?只适用于隔离系统。 6. 6. 环境的熵变 7. 熵变计算的主要公式 222r111ddddQUpVHVpSTTT? 对于封闭系统,一切0?W?的可逆过程的S?计算式,皆可

11、由上式导出 (1) ,m2121ln(/)ln(/)VSnCTTnRVV? ,m2112ln(/)ln(/)pSnCTTnRpp?,m21,m21ln(/)ln(/)VpSnCppnCVV? 上式只适用于封闭系统、理想气体、,mVC为常数,只有pVT变化的一切过程 (2) T2112ln(/)ln(/)SnRVVnRpp? 此式使用于n一定、理想气体、恒温过程或始末态温度相等的过程。 (3) ,m21ln(/)pSnCTT? 此式使用于n一定、,mpC 为常数、任意物质的恒压过程或始末态压力相等的过程。 8. 相变过程的熵变 此式使用于物质的量n一定,在?和?两相平衡时衡T,p下的可逆相变化。

12、 9. 热力学第三定律 或 0)0K,(m?完美晶体S 上式中符号?代表纯物质。上述两式只适用于完美晶体。 ambysambambamb/STQTQs?0)(limm?完美晶体ST0THS/?10. 标准摩反应熵 )B(BmBmr?SS 2rm2rm1r,m1()()(/)dpSTSTCTT? 上式中r,mpC?=B,mB(B)pC?,适用于在标准状态下,反应进度为1 mol时,任一化学反应在任一温度下,标准摩尔反应熵的计算。 11. 亥姆霍兹函数的定义 12. rd'TAW? 此式只适用n一定的恒温恒容可逆过程。 13. 亥姆霍兹函数判据 VTA,?平衡自发,0,0 只有在恒温恒容,

13、且不做非体积功的条件下,才可用A?作为过程的判据。 14. 吉布斯函数的定义 15 ,rd'TPGW? 此式适用恒温恒压的可逆过程。 16. 吉布斯函数判据 ?平衡自发,00 只有在恒温恒压,且不做非体积功的条件下,才可用G?作为过程的判据。 17. 热力学基本方程式 TSUA?TSHG?,TpG?ddddddddddddUTSpVHTSVpASTpVGSTVp? 热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p, V, T变化的过程。也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡

14、态的过程。 18. 克拉佩龙方程 mmd/d/()pTHTV? 此方程适用于纯物质的?相和?相的两相平衡。 19. 克劳修斯-克拉佩龙方程 2vap21vapm12dln(/)(/)dln(/)(/)(1/1/)ppHRTTppHRTT? 此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m?V与(g)m?V相比可忽略不计,在21TT?的温度范围内摩尔蒸发焓可视为常数。 对于气-固平衡,上式vapmH?则应改为固体的摩尔升华焓。 20. )(/(/ln(mfusmfus)1212ppHVTT? 式中fus代表固态物质的熔化。mfusV和mfusH为常数的固-液两相平衡才可用此式计

15、算外压对熔点的T的影响。 21. 麦克斯韦关系式 (/)(/)(/)(/)(/)(/)(/)(/)SpSVVTpTTpVSTVpSpTSVVTSp? 适用条件同热力学基本方程。 第四章 多组分系统热主要公式及其适用条件 1. 偏摩尔量: 定义: Cnp,T,nXX?BB (1) 其中X为广延量,如VUS. 全微分式:d?BBBBBdddp,nT,nXXXTpXnTp (2) 总和: ?BBBXnX (3) 2. 吉布斯-杜亥姆方程 在Tp 一定条件下,0dBBB?Xn, 或 0dBBB?Xx。 此处,xB 指B的摩尔分数,XB指B的偏摩尔量。 3. 偏摩尔量间的关系 广延热力学量间原有的关系,

16、在它们取了偏摩尔量后,依然存在。 例:H = U + PV ? HB = UB + PVB ; A = U - TS ? AB = UB - TSB ; G = H TS ? GB = HB - TSB ; .STG;STG;VpGVpGnp,pnT,TBBBBBB? 4. 化学势 定义 Cnp,T,nGGBB?B 5. 单相多组分系统的热力学公式 ?BBBddddnVpSTU ?BBBddddnpVS?BBBddddnVpTS-A ?BBBddddnpVTS-G CCCCBBBBBnp,T,nV,T,np,S,nV,S,nGnAnHnU? 但按定义,只有 CBnp,T,nG?才是偏摩尔量,其

17、余3个均不是偏摩尔量。 6. 化学势判据 在dT = 0 , dp = 0 W'= 0 的条件下,?平衡自发,000 )()d(BBBn 其中,?指有多相共存,)(B指 相内的B 物质。 7. 纯理想气体B在温度T压力p时的化学势 ?00pg)g)ln()*p(RTp pg 表示理想气体,* 表示纯态,(g)0为气体的标准化学势。真实气体标准态与理想气体标准态均规定为纯理想气体状态,其压力为标准压力 0p= 100 kPa。 8. 理想气体混合物中任一组分B的化学势 )ln(g(pg)0B0BBppRT)? 其中,总pypBB?为B的分压。 9. 纯真实气体B在压力为p时的化学势 *m

18、?000(g)(g)ln()(g)dp*pRTRTVppp 其中,(g)*mV为纯真实气体的摩尔体积。低压下,真实气体近似为理想气体,故积分项为零。 10. 真实气体混合物中任一组分B的化学势 ?pppRTVppRT0B0B0BBd(g)ln(g)(g)总 其中,VB(g)为真实气体混合物中组分B在该温度及总压Bp下的偏摩尔体积。低压下,真实气体混合物近似为理想气体混合物,故积分项为零。 11. 拉乌尔定律与亨利定律(对非电解质溶液) 拉乌尔定律: A*AAxpp? 其中,*Ap为纯溶剂A之饱和蒸气压,Ap为稀溶液中溶剂A的饱和蒸气分压,xA为稀溶液中A的摩尔分数。 亨利定律: BBBBBBB

19、ckbkxkpc,b,x,? 其中,Bp为稀溶液中挥发性溶质在气相中的平衡分压,BBBc,b,x,kk,k及为用不同单位表示浓度时,不同的亨利常数。 12. 理想液态混合物 定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。 BBBxpp*? 其中,0xB1 , B为任一组分。 13. 理想液态混合物中任一组分B的化学势 )ln(l)(l)B*BBxRT? 其中,(l)*B为纯液体B在温度T压力p下的化学势。 若纯液体B在温度T压力0p下标准化学势为(l)0B,则有: m?*00BBBB(l)(l)(l)d(l)0p*,pVp 其中,mB(l)*,V为纯液态B在温度T下的摩尔体积。

20、 14. 理想液态混合物的混合性质 0mix?V; 0mix?H; B?mixBBBB()ln()SnRxx; STGmixmix? 15. 理想稀溶液 溶剂的化学势: m?0AAAA(l)(l)ln()(l)d0p*,pRTxVp 当p与0p相差不大时,最后一项可忽略。 溶质B的化学势: )ln(ln(g)ln(g)ln(g)(g)(0B00B0B0BB0B0B0BBBbbRT)pbkRT)pbkRTppRTb,b,?溶质) 我们定义: ?ppb,b,0pV)pbkRTdln(g)B0B00B0B(溶质)(溶质) 同理,有: ?ppx,x,ppc,c00pVpkRTpV)pckRTd(溶质)

21、(溶质)d(溶质)(溶质)B0B0B0BB0B00B,0B)ln(g)ln(g) ?ppx,ppc,ppb,000pVxRTpVccRTpVbbRTd()ln()(d)()ln()(d)()ln(BB0BB0B0BB0B0BB溶质)溶质溶质溶质溶质(溶质)(溶质) 注:(1)当p与0p相差不大时,最后一项积分均可忽略。 (2)溶质B的标准态为0p下B的浓度分别为.x,cc,bb1B0B0B? , 时,B仍然遵循亨利定律时的假想状态。此时,其化学势分别为)(0B,溶质b)(0B,溶质c)(0B,溶质x。 16. 分配定律 在一定温度与压力下,当溶质B在两种共存的不互溶的液体间达到平衡时,若B在两

22、相分子形式相同,且形成理想稀溶液,则B在两相中浓度之比为一常数,即分配系数。 ?BBBB()()()()bcK,K 17. 稀溶液的依数性 溶剂蒸气压下降:B*AAxpp? 凝固点降低:(条件:溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出) 0Am,fusAffBffHM)R(TkbkT2*? 沸点升高:(条件:溶质不挥发) 0Am,vapAbbBbbHM)R(TkbkT2*? 渗透压: ?BVnRT 18. 逸度与逸度因子 气体B的逸度pB,是在温度T总压力总p下,满足关系式: )ln(g)(g)0B0BBppRT? 的物理量,它具有压力单位。其计算式为: d(g)expBBBppRTVpp

23、p0总1? 逸度因子(即逸度系数)为气体B的逸度与其分压力之比: BBBpp? 理想气体逸度因子恒等于1 。 19. 逸度因子的计算与普遍化逸度因子图 ppRTVp0d1(g)lnBB? 用Vm = ZRT / p 代VB,(Z为压缩因子)有: ?rp0rrppZd1)(lnB? 不同气体,在相同对比温度Tr对比压力pr 下,有大致相同的压缩因子Z,因而有大致相同的逸度因子?。 20. 路易斯兰德尔逸度规则 混合气体中组分B的逸度因子等于该组分B在该混合气体温度及总压下单独存在时的逸度因子。 BB*BBBBBypypyppp总总?总 适用条件:由几种纯真实气体在恒温恒压下形成混合物时,系统总体

24、积不变。即体积有加和性。 21. 活度与活度因子 对真实液态混合物中溶剂: BB*BB*BBln(l)ln(l)(l)fxRTaRT? ,且有:1limB1B?fx,其中aB为组分B的活度,fB为组分B的活度因子。 若B挥发,而在与溶液平衡的气相中B的分压为Bp,则有 BBBBBBxppxaf*? ,且 *ppaBBB? 对温度T压力p下,真实溶液中溶质B的化学势,有: ?00BBBBB0ln()dppbRT)Vpb(溶质)(溶质)溶质 其中,?0BBBbba/为B的活度因子,且 1Blim?BBb0 。 当p与0p相差不大时,B0BBln)(aRT?溶质(溶质),对于挥发性溶质,其在气相中分

25、压为:BBbkpb?,则,?BBBBBbbppakk第五章 化学主要公式及其适用条件 1 1 化学反应亲和势的定义 rmAG?A代表在恒温、恒压和'0W?的条件下反应的推动力,A >0反应能自动进行;A0处于平衡态;A< 0反应不能自动进行。 2 2 摩尔反应吉布斯函数与反应进度的关系 ?BBrm,BGTpG? 式中的?p?T,G 表示在T,p及组成一定的条件下,反应系统的吉布斯函数随反应进度的变化率,称为摩尔反应吉布斯函数变。 3 3 化学反应的等温方程 式中 ?rmBBG ,称为标准摩尔反应吉布斯函数变;?BBBpJpp? ,称为反应的压力商,其单位为1。此式适用理想气

26、体或低压下真实气体,在T,p及组成一定,反应进度为1 mol时的吉布斯函数变的计算。 4 4 标准平衡常数的表达式 式中eqBp为参加化学反应任一组分B的平衡分压力,B为B的化学计量数。K量纲为一。若已知平衡时参加反应的任一种物质的量nB,摩尔分数yB,系统的总压力p,也可采用下式计算K: ?BBBBBBBBBKnppnypp? 式中?Bn为系统中气体的物质的量之和,?B?为参加反应的气态物质化学计量数的代数和。此式只适用于理想气体。 5 5 标准平衡常数的定义式 或 rmexp()KGRT? 6 6 化学反应的等压方程范特霍夫方程 pJlnRTGGmrmr? ?BeqBB?ppK?RTGKm

27、rln?微分式 2rmdlndKTHRT? 积分式 21rm2121ln()()KKHTTRTT? 不定积分式 rmlnKHRTC? 对于理想气体反应,rmrmHH?,积分式或不定积分式只适用于rmH?为常数的理想气体恒压反应。若rmH?是T的函数,应将其函数关系式代入微分式后再积分,即可得到lnK与T的函数关系式。 7 7 真实气体的化学平衡 上式中eqBp,eqBp,eqB?分别为气体B在化学反应达平衡时的分压力、逸度和逸度系数。K则为用逸度表示的标准平衡常数,有些书上用fK表示。 上式中 eqeqeqBBBpp?。 第六章 相主要公式及其适用条件 1 1 吉布斯相律 2?PCF 式中F为

28、系统的自由度数(即独立变量数);P为系统中的相数;“2”表示平衡系统只受温度、压力两个因素影响。要强调的是,C称为组分数,其定义为C=SRR,S为系统中含有的化学物质数,称物种数;R为独立的平衡化学反应数;'R为除任一相中?1Bx(或1B?)。同一种物质在各平衡相中的浓度受化学势相等限制以及R个独立化学反应的标准平衡常数K对浓度限制之外,其他的浓度(或分压)的独立限制条件数。 相律是表示平衡系统中相数、组分数及自由度数间的关系。供助这一关系可以解决:(a)计算一个多组分多平衡系统可以同时共存的最多相数,即F0时,P值最大,系统的平衡相数达到最多;(b)计算一个多组分平衡系统自由度BBB

29、eqeqeqBBBBBB()()()Kpppp?数最多为几,即是确定系统状态所需要的独立变量数;(c)分析一个多相平衡系统在特定条件下可能出现的状况。 应用相律时必须注意的问题:(a)相律是根据热力学平衡条件推导而得的,故只能处理真实的热力学平衡系统;(b)相律表达式中的“2”是代表温度、压力两个影响因素,若除上述两因素外,还有磁场、电场或重力场对平衡系统有影响时,则增加一个影响因素,“2”的数值上相应要加上“1”。若相平衡时两相压力不等,则2?PCF式不能用,而需根据平衡系统中有多少个压力数值改写“2”这一项;(c)要正确应用相律必须正确判断平衡系统的组分数C和相数P。而C值正确与否又取决与

30、R与R的正确判断;(d)自由度数F只能取0以上的正值。如果出现F<0,则说明系统处于非平衡态。 2 2 杠杆规则 杠杆规则在相平衡中是用来计算系统分成平衡两相(或两部分)时,两相(或两部分)的相对量,如图61所示,设在温度为T下,系统中共存的两相分别为相与相。 图61 说明杠杆规则的示意图 图中M,分别表示系统点与两相的相点;BMx,Bx?,Bx?分别代表整个系统,相和相的组成(以B的摩尔分数表示);n,?n与?n则分别为系统点,相和相的物质的量。由质量衡算可得 或 上式称为杠杆规则,它表示,两相之物质的量的相对大小。如式中的组成由 Bx? BBBBB()()aMMnxxnxx?BBBB

31、()()MMxxnnxx?摩尔分数Bx?,BMx,Bx?换成质量分数B?,BM?,B?时,则两相的量相应由物质的量?n与?n(或?m与?m)。由于杠杆规则是根据物料守恒而导出的,所以,无论两相平衡与否,皆可用杠杆规则进行计算。注意:若系统由两相构成,则两相组成一定分别处于系统总组成两侧。 第七章 电 化 主要公式及其适用条件 1迁移数及电迁移率 电解质溶液导电是依靠电解质溶液中正、负离子的定向运动而导电,即正、负离子分别承担导电的任务。但是,溶液中正、负离子导电的能力是不同的。为此,采用正(负)离子所迁移的电量占通过电解质溶液的总电量的分数来表示正(负)离子之导电能力,并称之为迁移数,用t+

32、( t- ) 表示。即 正离子迁移数 ?uuuQQQtvvv 负离子迁移数 ?uuuQQQtvvv 上述两式适用于温度及外电场一定而且只含有一种正离子和一种负离子的电解质溶液。式子表明,正(负)离子迁移电量与在同一电场下正、负离子运动速率?v与 ?v有关。式中的u+ 与u- 称为电迁移率,它表示在一定溶液中,当电势梯度为1V·m-1 时正、负离子的运动速率。 若电解质溶液中含有两种以上正(负)离子时,则其中某一种离子B的迁移数t B计算式为 ?BBBBQQtz 2电导、电导率与摩尔电导率 衡量溶液中某一电解质的导电能力大小,可用电导G,电导率与摩尔电导率m来表述。电导G与导体的横截面

33、As及长度l之间的关系为 lARGs?1 式中称为电导率,表示单位截面积,单位长度的导体之电导。对于电解质溶 液,电导率则表示相距单位长度,面积为单位面积的两个平行板电极间充满 电解质溶液时之电导,其单位为S · m-1。若溶液中含有B种电解质时,则该溶液的电导率应为B种电解质的电导率之和,即 ?BB(溶液) 虽然定义电解质溶液电导率时规定了电极间距离、电极的面积和电解质溶液的体积,但因未规定相同体积电解质溶液中电解质的量,于是,因单位体积中电解质的物质的量不同,而导致电导率不同。为了反映在相同的物质的量条件下,电解质的导电能力,引进了摩尔电导率的概念。电解质溶液的摩尔电导率m定义是

34、该溶液的电导率与其摩尔浓度c之比,即 c?m m表示了在相距为单位长度的两平行电极之间放有物质的量为1 mol电解质之溶液的电导。单位为S · m2 · mol-1 。使用m时须注意:(1)物质的量之基本单元。因为某电解质B的物质的量nB正比于B的基本单元的数目。例如,在25 0C下,于相距为l m的两平行电极中放人1mol BaSO4(基本单元)时,溶液浓度为c ,其m(BaSO4 ,298.15K)= 2.870×10-2 S · m2 · mol-1 。若基本单元取(21BaS04),则上述溶液的浓度变为c',且c'=2c

35、 。于是,m'(21BaS04,298.15K)= 21m(BaS04,298.15K)=1.435×10-2 S · m2 · mol-1;(2)对弱电解质,是指包括解离与未解离部分在内总物质的量为1 mol的弱电解质而言的。m是衡量电解质导电能力应用最多的,但它数值的求取却要利用电导率,而的获得又常需依靠电导G的测定。 3. 离子独立运动定律与单种离子导电行为 摩尔电导率m与电解质的浓度c之间有如下关系: cA?mm 此式只适用于强电解质的稀溶液。式中A与 ?m 在温度、溶液一定下均为常数。?m是c?0时的摩尔电导率,故称为无限稀释条件下电解质的摩尔电

36、导率。?m是电解质的重要特性数据,因为无限稀释时离子间无静电作用,离子独立运动彼此互不影响,所以,在同一温度、溶剂下,不同电解质的?m数值不同是因组成电解质的正、负离子的本性不同。因此,进一步得出 ?,- m, mm 式中?与?分别为电解质?AC全部解离时的正、负离子的化学计量数,?, m与?, m则分别为溶液无限稀时正、负离子的摩尔电导率。此式适用溶剂、温度一定条件下,任一电解质在无限稀时的摩尔电导率的计算。而?, m和?, m可通过实验测出一种电解质在无限稀时的? m与迁移数 ?Bt ,再由下式算出: ?mm,mm,;tt 利用一弱电解质的? m值及一同温同溶剂中某一浓度(稀溶液)的该弱电

37、解质之 m,则从下式可计算该弱电解质在该浓度下的解离度: ?mm 4电解质离子的平均活度和平均活度系数 强电解质?AC解离为?zC离子和?zA离子,它们的活度分别为a, a+ ,a - ,三者间关系如下:?aaa 因实验只能测得正、负离子的平均活度?a,而?a与a,a+,a - 的关系为 ?aaaa; 另外 ?0bab 式中:?b称为平均质量摩尔浓度,其与正、负离子的质量摩尔浓度b+,b- 的关系为 ?bbb?。 式中?称离子平均活度系数,与正、负离子的活度系数?,?的关系为 ? 。 5. 离子强度与德拜休克尔极限公式 离子强度的定义式为 ?2BBB12IbZ。式中bB与ZB分别代表溶液中某离

38、子B的质量摩尔浓度与该离子的电荷数。单位为molkg -1。I 值的大小反映了电解质溶液中离子的电荷所形成静电场强度之强弱。I的定义式用于强电解质溶液。若溶液中有强、弱电解质时,则计算I值时,需将弱电解质解离部分离子计算在内。 德拜休克尔公式:Izz A? lg 上式是德拜休克尔从理论上导出的计算 ?的式子,它只适用于强电解质极稀浓度的溶液。A为常数,在25 0C的水溶液中A= - 0.509(kgmol-1)1/2 。 6. 可逆电池对环境作电功过程的mrmrmrH,S,G,oK及Qr的计算 在恒T,p,可逆条件下,若系统经历一过程是与环境间有非体积功交换时, 则 ?G = Wr 当系统(原

39、电池)进行1 mol反应进度的电池反应时,与环境交换的电功W'= - zFE,于是 ?rGm= -zFE 式中z为1mol反应进度的电池反应所得失的电子之物质的量,单位为mol电子mol反应,F为1mol电子所带的电量,单位为C · mol-1电子。 如能得到恒压下原电池电动势随温度的变化率?pET(亦称为电动势的温度系数),则恒压下反应进度为1mol的电池反应之熵差 ?rSm可由下式求得: ?r S m =?rmppGEzFTT 再据恒温下,?rGm = ?rHm T ?r Sm,得?r Hm = -zFE + zFT ?pET。 此式与?rGm一样,适用于恒T,p 下反应

40、进度为1mol的电池反应。 若电池反应是在温度为T 的标准状态下进行时,则 于是 ?OOlnKzFE/RT 此式用于一定温度下求所指定的原电池反应的标准平衡常数OK。式中OE称为标准电动势。 7. 原电池电动势E的求法 计算原电池电动势的基本方程为能斯特方程。如电池反应 aA(aA)+cC(aC) = dD(aD)+f F(aF) 则能斯特方程为 ?dfODFacAClnaaRTEEzFaa 上式可以写成 ?BOBlnRTEEazF 上式表明,若已知在一定温度下参加电池反应的各物质活度与电池反应的得失电子的物质的量,则E就可求。反之,当知某一原电池的电动势,亦能求出参加电池反应某物质的活度或离

41、子平均活度系数 ?。应用能斯特方程首要的是要正确写出电池反应式。 在温度为T,标准状态下且氢离子活度aH+为1时的氢电极定作原电池阳极并规定该氢电极标准电极电势为零,并将某电极作为阴极(还原电极),与标准氢组成一原电池,此电池电动势称为还原电极的电极电势,根据能斯特方程可以写出该电极电势与电极上还原反应的还原态物质活度a(还原态)及氧化态物质活度a(氧化态)的关系 ?OlnRTaEEzFa(还原态)(电极)(电极)(氧化态) 利用上式亦能计算任一原电池电动势。其计算方法如下:对任意两电极所构成的原电池,首先利用上式计算出构成该原电池的两电极的还原电极电势,再按下式就能算出其电动势E: E =

42、E(阴)E(阳) 式中E(阴)与E(阳)分别为所求原电池的阴极和阳极之电极电势。若构成原电池的两电极反应的各物质均处在标准状态时,则上式改写为: oomrzFEG? (阳)(阴)OOOEEE? (阴)OE与(阳)OE可从手册中查得。 8极化电极电势与超电势 当流过原电池回路电流不趋于零时,电极则产生极化。在某一电流密度下的实际电极电势E与平衡电极电势E(平)之差的绝对值称为超电势?,它们间的关系为 ? (阳) = E(阳) ?E (阳,平) ? (阴) = E(阴,平) ? E(阴) 上述两式对原电池及电解池均适用。 第十章 界面主要公式及其适用条件 1比表面吉布斯函数、比表面功及表面张力 面

43、吉布斯函数为恒T,p及相组成不变条件下,系统由于改变单位表面积而引起系统吉布斯函数的变化量,即)B(,)/(?npTsAG?,单位为2Jm?。 张力是指沿着液(或固)体表面并垂直作用在单位长度上的表面收缩力,单位为1Nm?。 面功为在恒温、恒压、相组成恒定条件下,系统可逆增加单位表面积时所获得的可逆非体积功,称比表面功,即s'rd/dAW?,单位为2Jm?。 张力是从力的角度描述系统表面的某强度性质,而比表面功及比表面吉布斯函数则是从能量角度描述系统表面同一性质。三者虽为不同的物理量,但它们的数值及量纲相同,只是表面张力的单位为力的单位与后两者不同。 2拉普拉斯方程与毛细现象 (1)

44、曲液面下的液体或气体均受到一个附加压力p?的作用,该p?的大小可由拉普拉斯方程计算,该方程为 rp/2? 式中:p?为弯曲液面内外的压力差;为表面张力;r为弯曲液面的曲率半径。 注意:计算p?时,无论凸液面或凹液面,曲率半径r一律取正数,并规定弯曲液面的凹面一侧压力为内p,凸面一侧压力为外p,p?一定是内p减外p,即 外内ppp? 附加压力的方向总指向曲率半径中心; 对于在气相中悬浮的气泡,因液膜两侧有两个气液表面,所以泡内气体所承受附加压力为rp/4?。 (2) 曲液面附加压力引起的毛细现象。当液体润湿毛细管管壁时,则液体沿内管上升,其上升高度可按下式计算 2cos/hrg? 式中:?为液体

45、表面张力;为液体密度;g为重力加速度;为接触角;r为毛细管内径。 注意:当液体不润湿毛细管时,则液体沿内管降低。 3开尔文公式 式中:rp为液滴的曲率半径为r时的饱和蒸气压;p为平液面的饱和蒸气压;,M,分别为液体的密度、摩尔质量和表面张力。上式只用于计算在温度一定下,凸液面(如微小液滴)的饱和蒸气压随球形半径的变化。当计算毛细管凹液面(如过热液体中亚稳蒸气泡)的饱和蒸气压随曲率半径变化时,则上式的等式左边项要改写为)/ln(ppRTr。无论凸液面还是凹液面,计算时曲率半径均取正数。 4朗缪尔吸附等温式 朗缪尔基于四项假设基础上导出了一个吸附等温式,即朗缪尔吸附等温式。四项假设为:固体表面是均

46、匀的;吸附为单分子层吸附;吸附在固体表面上的分子之间无相互作用力;吸附平衡是动态的。所导得的吸附等温式为 bpbp?1? rMppRTr?/2)/ln(?式中:称覆盖率,表示固体表面被吸附质覆盖的分数;b为吸附平衡常数,又称吸附系数,b值越大则表示吸附能力越强;p为吸附平衡时的气相压力。实际计算时,朗缪尔吸附等温式还可写成 /(1)VVbpbp?aam 式中:amV表示吸附达饱和时的吸附量;Va则表示覆盖率为时之平衡吸附量。注意,朗缪尔吸附等温式只适用于单分子层吸附。 5吸附热H?ads的计算 吸附为一自动进行的过程,即0?G。而且,气体吸附在固体表面上的过程是气体分子从三维空间吸附到二维表面

47、上的过程,为熵减小的过程。根据STGH?可知,吸附过程的H?为负值,即吸附为放热的过程,吸附热Hads?可由下式计算: 121212ads/lnppTTTRTH? 式中:p1与p2分别为在T1与T2下吸附达同一平衡吸附量时之平衡压力。 6润湿与杨氏方程 (1)润湿为固体(或液体)的表面上的一种流体(如气体)被另一种流体(如液体)所替代的现象。为判断润湿程度而引进接触角,如将液体滴在固体表面时,会形成一定形状的液滴,在气、液、固三相交界处,气液表面张力与固液界面张力之间的、并将液体夹在其中的夹角,称为接触角,其角度大小取决于三种表(界)面张力的数值,它们之间的关系如下 llss/)(cos? 上

48、式称为杨氏方程。式中:s?,ls?,l?分别表示在一定温度下的固气、固液及气液之间的表(界)面张力。杨氏方程只适用光滑的表面。 (2)铺展。铺展是少量液体在固体表面上自动展开并形成一层薄膜的现象。用铺展系数S作为衡量液体在固体表面能否铺展的判据,其与液体滴落在固体表面前后的表(界)面张力关系有 llsss?GS S0则液体能在固体表面上发生铺展;若S<0则不能铺展。 7溶液的表面吸附及吉布斯吸附等温式 溶质在溶液表面层(又称表面相)中的浓度与其在本体(又称体相)中的浓度不同的现象称溶液表面的吸附。若溶质在表面层中的浓度大于其在本体中的浓度时则称为正吸附,反之,则称为负吸附。所以,将单位表面层中所含溶质的物质的量与具有相同数量溶剂的本体溶液中所含溶质的物质的量之差值称为表面吸附量,用符号表示。吉布斯用热力学方法导出能用于溶液表面吸附的吸附等温式,故称为吉布斯吸附等温式,其式如下 (/)(/)TcRTc? 式中:(/)Tc? 为在温度T,浓度c时随c的变化率。此式适用于稀溶液中溶质在溶液表面层中吸附量的计算。 第十一章 化学动主要公式及其适用条件 1化学反应速率的定义 tVvdd1? 式中:V为体积,? 为反应进度,t 为时间。 若反应在恒容下进行时,则上式可改写为 BBBBdd1ddncvVtt? ?

0/150

联系客服

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!

THE END
0.物理化学下册学习知识重点及公式定理复习资料集物理化学下册知识点及公式复习集复习进程第七章 电化学1.正负、阴阳极规定及离子迁移方向正负极:电势高的为正极,电势低的为负极阴阳极:发生氧化反应的为阳极,发生还原反应的为阴极 离子迁移方向:阴离子迁向阳极,阳离子迁向阴极 原电池:正极-阴极 负极-阳极 电解池:正极-阳极 负极-阴极 2.ξzF Q =F -- 法 jvzquC41yy}/5?5fqey/pny1fqi0c>6:34<7;;3jvor
1.江苏自学考试物理化学(三)教材大纲这些分子、原子相互作用及相对运动均具有一定的能量,它们之间相互作用及运动方式的变化必然引起能量形式的转化,因而物质的化学变化常常伴随有热、电、光、声等物理现象。作为化学学科的一个分支,物理化学就是从化学与物理现象的联系入手去研究化学变化的一般规律的学科。物理化学主要运用物理的理论及实验方法来研究化学的jvzquC41yy}/|rpcq5<60lto1jznn88a81812?d33a74ajs36:626:5763923:;224897?d20jzn
2.大学物理化学公式总结范文导语:如何才能写好一篇大学物理化学公式总结,这就需要搜集整理更多的资料和文献,欢迎阅读由公文云整理的十篇范文,供你借鉴。 篇1 关键词:物理化学;师资队伍;教材;课程;教学内容;教学方法 “物理化学”不仅是化学学科的核心课程,也是生命科学、医学、地球科学、环境科学等相关学科的重要基础课程,在培养理工科创新人才方jvzquC41yy}/i€~qq0ipo8mcqyko1B>77;4ivvq
3.大学物理化学公式总结通用12篇开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇大学物理化学公式总结,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。 第1篇 关键词:物理化学;课程改革;化工专业;实践导向 jvzquC41ynpyv}3zwgyiw7hqo1nbq€jp19752?3jvor
4.物化公式总结(傅献彩第五版)物理化学(第五版)公式总结傅献彩版专业:化学姓名:XXX学号:XXX物化公式总结第五章 相平衡一、主要概念组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶)二、重要定律与公式本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征jvzquC41o0972mteu0tfv8iqe1:67=;5:5>/j}rn
5.实验八原电池电动的测定1. 按室温计算各电池电动势值。(注:预习时算好) 2. 插上数字电位差计的电源插座,打开电源开关预热5分钟。将右侧功能选择开关置于测量档。 3. 测定实验时的室温,计算该温度下的标准电池电动势值,计算公式如下:Et=[1.0186-4.06×10-5(t℃-20)-9.5×10-7(t℃-20)2]V,t—实验温度,℃,。 jvzquC41|nw/|~xv0gjv0ls1ynny1rshq1713;4389=/j}r
6.物理化学教学大纲教学要求:理解偏摩尔量的定义与物理意义;集合公式和吉布斯-杜亥姆方程;化学势的定义;用化学势表达的适用于相变化和化学变化的平衡判据;逸度的概念,逸度参考状态的含义,用逸度表示混合物中组分的化学势;理想混合物和理想稀溶液的概念;活度的概念,选择活度的参考状态;用活度表示液态(固态)混合物中的组分的以及溶液中溶jvzquC41nk~z0pxcw0kew7hp1ktgq862;5554@60jvs
7.[渝粤教育]天津大学21秋物理化学2B(李松林,侯德榜)参考资料本文详细阐述了物理化学中的基础概念,包括原电池、电极电势、能斯特方程以及电导率和摩尔电导率等。讲解了法拉第定律的应用,探讨了离子迁移数、电极极化和电解过程中的现象。同时,深入讨论了量子力学的基本原理,如波粒二象性、粒子在势箱中的行为以及能级分布。此外,还涵盖了统计热力学中的能级分布、玻尔兹曼分布和配分jvzquC41dnuh0lxfp0tfv8gpl{kew8ftvkimg8igvcomu8645867;>9
8.电池标准电动势Eθ,电池电动势E,标准电极电势之间关系是什么啊能因此,求得的E是实际电动势,用“E”表示.而“Eθ”指的是标准电动势. APP内打开 结果2 举报 电池电动势 为你推荐 查看更多 16.原电池电动势及电极电势的相关计算,氧化还原反应进行的方向 我在word上打的公式显示不出来,我截图…… 27149 如果规定标准氢电极的电极电势为1,则可逆电极的电极电势值和电池的电动jvzquC41sd4{wx~gdcth0lto1zlf/zzguvopp8vwguzjqw48g7kde:=242kf2j5;56?dfl999c885k70jvsm
9.大学物理化学化学动力学基础.pdf电导率、电动势、粘度等或现代谱仪、 )(IRUV- 、、、等监测与浓度有定 VISESRNMRESCA) 量关系的物理量的变化,从而求得浓度变化。 物理方法有可能做原位反应。 上一内容下一内容回主目录返回 10.3化学反应的速率方程 速率方程 基元反应 jvzquC41oc~/dxtm33>/exr1jvsm1;5461633B4:22;12@6352672<;0ujzn
10.大学物理化学实验报告化学电池温度系数的测定课件.doc物理化学实验报告 院系化学化工学院 班级化学061 学号13 姓名沈建明实验名称 化学电池温度系数的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 19.60 ℃ 气压 102.0 kPa 成绩 一、目的和要求 1、掌握可逆电池电动势的测量原理和电位差计的操作技术; 2、学会几种电极和盐桥的制备方法; 3、通过原电池电动势的测定jvzquC41yy}/5?5fqey/pny1fqi04>6929?227mvon
11.物理化学考前复习:基础知识+重点(考前必备)(2)求化学反应的平衡常数:ln r m G nFE RT K ? ? ? ?=-=- ,则ln K ? = nFE RT ? (3)求微溶盐活度积:微溶盐活度积sp K 实质就是微溶盐溶解过程的平衡常数。 (4)求离子平均活度系数:测定一电池的电动势E ,再由? ? 求得E ? 后,依据能斯特方程求算电池电解质溶液的离子平均活度a ± 及jvzquC41o0972mteu0tfv8iqe1j36>883;7/j}rn